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Abstract

Small unmanned aircraft systems increasingly share low-altitude airspace
with crewed aircraft, rotorcraft, and other unmanned platforms whose tra-
jectories are only partially observable and weakly cooperative. In this
environment, onboard detect-and-avoid capabilities are necessary to sup-
port beyond visual line of sight operations when reliance on ground-based
surveillance or cooperative transponders is not assured. Vision-based sens-
ing is attractive for small platforms because of its geometric richness and
the availability of compact low-cost cameras, but its feasibility is con-
strained by severe limits on mass, power, computation, and thermal dissi-
pation. This paper examines the feasibility of onboard vision-based detect-
and-avoid for small unmanned aircraft systems subject to realistic size,
weight, and power constraints by integrating sensor modeling, algorithmic
complexity analysis, and closed-loop encounter-level performance. The
discussion focuses on monocular and stereo visible-band configurations
mounted on multirotor and fixed-wing platforms with maximum take-off
mass below 25 kg and continuous electrical power budgets below 80 W. A
dynamical engagement framework is used qualitatively to relate detection
range distributions, track continuity, and decision latency to miss-distance
statistics without presupposing a particular regulatory standard of per-
formance. The analysis highlights the coupled role of optics, pixel-level
signal-to-noise, embedded inference latency, and maneuver authority in
shaping achievable detect-and-avoid envelopes, while acknowledging that
environmental variability and non-cooperative traffic behavior introduce
uncertainties that limit deterministic guarantees. The results collectively
indicate conditions under which onboard vision sensing constitutes a tech-
nically viable component of layered separation assurance architectures for
small unmanned aircraft.

1 Introduction

Modern low-altitude airspace increasingly accommodates diverse aerial actors that range
from lightweight multirotor platforms conducting infrastructure inspection to fixed-wing
small unmanned aircraft performing logistics, environmental monitoring, and public safety
missions [1]. These operations occur within a limited vertical envelope, typically below
400 feet above ground level, where the interaction between crewed general aviation traffic,
obstacles, and unmanned systems becomes dense and complex. The multiplicity of flight
purposes and operational patterns introduces heterogeneity in flight trajectories, velocity




distributions, and maneuvering behaviors. This complexity challenges existing separation
assurance concepts developed for traditional air traffic management, which presume co-
operative surveillance, standardized equipment, and centralized control. Small unmanned
aircraft, by contrast, often operate with decentralized command architectures and without
transponders, depending instead on local sensing and autonomy to ensure safety.

A central difficulty lies in the limited feasibility of universal cooperative surveillance.
Many small platforms cannot carry certified transponders or automatic dependent surveil-
lance broadcast units because of mass, power, and cost limitations. Similarly, ground-
based radar or networked sensor coverage may not extend into the low-altitude corridors
where unmanned aircraft fly, particularly in rural and semi-urban settings [2]. Even where
network links exist, bandwidth and latency constraints restrict the utility of continuous
uplink or downlink for real-time conflict detection. Therefore, it cannot be assumed that
all relevant traffic participants are visible to any centralized system. The resulting partial
observability of the airspace motivates research into onboard detect-and-avoid systems
capable of sensing, interpreting, and responding to traffic autonomously.

For such onboard systems, perception of nearby aircraft or obstacles is not a luxury
but a safety-critical requirement. Detect-and-avoid capability encompasses three linked
functions: detection of intruders within a defined volume around the ownship, estimation
of their trajectories relative to the ownship, and timely generation of maneuver commands
to prevent loss of separation. Implementation of these functions on small unmanned air-
craft must respect strict size, weight, and power constraints. Each gram of additional mass
affects endurance, and each watt of power devoted to sensing or computation reduces en-
ergy available for propulsion [3]. Embedded processors must dissipate heat without active
cooling, and the physical volume available for cameras or sensors is bounded by aerody-
namic and structural limitations. The detect-and-avoid subsystem must therefore achieve
sufficient sensing performance using minimal hardware, a demanding engineering problem
given the range and reliability requirements associated with air collision avoidance.

Vision-based sensing emerges as a particularly attractive solution because cameras offer
high spatial resolution per unit mass and can function passively without emitting energy.
Passive vision aligns naturally with the power and weight budgets of small unmanned
aircraft. The same small optical systems used for navigation or mapping can be lever-
aged for detect-and-avoid, thereby promoting hardware reuse and integration. However,
vision-based systems introduce dependencies on environmental factors that are difficult
to control. Illumination levels, weather conditions, and background textures exert sub-
stantial influence on detection performance [4]. Bright sun angles can cause glare, while
overcast skies may reduce contrast between an aircraft and its background. Fog, haze, or
rain degrade visibility, while cluttered ground backgrounds or moving shadows increase
false alarm likelihood. Thus, the reliability of a purely vision-based system fluctuates with
external conditions.

Despite these limitations, the ability of modern computer vision algorithms to extract
geometric and semantic information from images has advanced significantly. Detection of
small, moving objects against dynamic backgrounds has become feasible even on embed-
ded processors, though still computationally demanding. The typical approach involves
detecting potential targets, tracking them over time, and analyzing motion patterns to
estimate whether they represent collision threats. Unlike radar, which directly provides
range and velocity, cameras yield only bearing and bearing rate information. Range esti-
mation therefore relies on motion parallax, apparent size variation, or stereo disparity [5].
Each of these methods has sensitivity limits determined by optics and image quality. Small
targets at large distances subtend only a few pixels, making reliable detection challenging



unless noise levels are extremely low and exposure control is precise.

The absence of direct range information distinguishes vision-based detect-and-avoid
from radar-based systems. Range must be inferred indirectly from sequences of images,
often through filtering or probabilistic estimation. For example, if the bearing of a de-
tected object remains approximately constant over successive frames while its apparent size
increases, a potential collision trajectory is implied. This "constant-bearing, decreasing-
range" heuristic has been used in both biological and robotic contexts as an indicator of
impending collision. Implementing it robustly on a resource-limited embedded system re-
quires accurate stabilization, timing, and image registration to separate genuine bearing
constancy from apparent effects due to platform vibration or camera motion. [6]

Autonomy in detect-and-avoid demands that perception, estimation, and control func-
tions interact seamlessly. Once an intruder is detected, the system must estimate closure
time and feasible avoidance trajectories consistent with flight dynamics. For multirotor
aircraft, rapid lateral or vertical maneuvers may be possible, whereas fixed-wing aircraft
are constrained by stall limits and minimum turning radii. The decision logic must thus be
parameterized by platform characteristics. It must also account for uncertainties in detec-
tion and estimation; premature or spurious avoidance actions can deplete energy reserves
and disrupt missions, while delayed reactions risk collision. Balancing these opposing risks
within the computational and sensing constraints of small unmanned aircraft represents a
central feasibility challenge.

The detect-and-avoid problem can be considered at two timescales [7]. At the strategic
level, the aircraft plans its trajectory to avoid entering conflict zones predicted over hori-
zons of tens of seconds or minutes. At the tactical level, it responds to imminent threats
within seconds. Small unmanned aircraft with limited sensing range and computational
resources will necessarily rely more heavily on tactical avoidance, because their sensors
may not detect distant intruders early enough for long-term trajectory planning. Vision-
based systems are particularly suited to the tactical regime, where relative motion cues
and short-range detections dominate. However, achieving the necessary update rates and
processing speeds requires careful optimization of both hardware and algorithms. Delays
of even a few hundred milliseconds can materially reduce the time available for avoidance,
especially at closure speeds exceeding 30 m/s.

Another fundamental aspect concerns field of view. Cameras have finite angular cover-
age, and obstructions from airframe structures, rotors, or payloads can produce blind zones
[8]. Multiple cameras may be required to achieve near-spherical coverage, but each addi-
tional unit adds mass and power consumption. Furthermore, wider fields of view obtained
through fisheye lenses reduce angular resolution and hence detection range. Designers
must therefore trade between coverage and sensitivity, considering the typical geometries
of encounters in the intended operational domain. For example, head-on encounters may
dominate in certain flight corridors, favoring forward-facing cameras with moderate fields
of view and high resolution. In contrast, urban operations with potential intrusions from
multiple directions might justify panoramic configurations despite their higher resource
cost.

Thermal management is another constraint seldom highlighted in high-level detect-
and-avoid discussions but critical in practice. Embedded processors executing intensive
computer vision workloads generate heat that must be dissipated through convection and
conduction [9]. In thin air at altitude or enclosed fuselage spaces with limited airflow,
temperature rise can lead to throttling or failure. Passive heat sinks and careful placement
relative to cooling airflow become essential design considerations. Yet these add to mass
and volume, illustrating again how each physical parameter interacts with others in the



size, weight, and power design space.

The interplay of these constraints defines an achievable region of system performance
rather than a single operating point. Within this region, performance metrics such as
detection probability versus range, false alarm rate, processing latency, and power draw
are interdependent. Improving one metric often degrades another. Increasing frame rate
enhances temporal resolution but raises processing load and power consumption [10]. In-
creasing exposure time improves sensitivity but introduces motion blur. Employing deep
neural networks can improve detection robustness but may exceed the capabilities of avail-
able hardware. Consequently, feasibility assessments must evaluate system performance
not only in isolation but also in the context of the complete aircraft energy and control
budget.

From an operational perspective, the detect-and-avoid systems purpose is to support
safe and predictable integration of unmanned aircraft into shared airspace. This goal im-
poses implicit reliability expectations. Even if regulations do not mandate quantitative
probabilities of midair collision avoidance for small unmanned aircraft, public acceptance
and insurance considerations will demand consistent performance. Vision-based systems,
given their environmental dependencies, will likely need to demonstrate reliability through
extensive statistical evidence collected over diverse conditions [11]. This requirement in-
teracts with the hardware constraints because testing under variable illumination, clutter,
and weather may expose performance degradations that can only be mitigated by hard-
ware improvements, such as higher dynamic range sensors or additional cameras. Hence,
the process of validating feasibility becomes iterative between algorithmic optimization
and hardware adaptation.

Another aspect that affects practical feasibility is integration with other onboard func-
tions. Cameras used for detect-and-avoid may also serve navigation, mapping, or in-
spection purposes, sharing bandwidth and computation with these functions. Time-
multiplexing or prioritization schemes are required to ensure that safety-critical detect-and-
avoid processing preempts less critical tasks during potential conflicts. This introduces
complexity into software architecture and scheduling, as well as implications for safety
assurance. The detect-and-avoid function must remain responsive even under heavy sys-
tem load or degraded conditions. Techniques such as fixed-time scheduling, watchdog
monitoring, and fault-tolerant processing can mitigate these risks but consume additional
resources. [12]

The dynamics of small unmanned aircraft themselves contribute uncertainty. Lightweight
multirotors are susceptible to wind gusts, which can cause abrupt attitude changes and
vibrations. These motions induce image jitter that complicates small-target detection, es-
pecially at longer ranges where targets occupy few pixels. Image stabilization and inertial
compensation can reduce these effects but require additional sensors and computational
effort. Similarly, the vibratory environment can affect camera calibration and focus, lead-
ing to degraded image quality over time. Sustaining reliable detect-and-avoid performance
under such conditions requires robust mechanical design as well as algorithmic compensa-
tion.

Future developments in imaging technology may alleviate some of these constraints
[13]. High-sensitivity, low-noise image sensors capable of operating across wider dynamic
ranges could extend reliable detection to lower illumination levels without increasing power
consumption. Advances in neuromorphic or event-based vision sensors, which report only
pixel changes rather than full frames, offer potential for significant power and bandwidth
savings. Such sensors align naturally with the motion-centric nature of detect-and-avoid
tasks, although their maturity for safety-critical applications remains limited. Integrating



these technologies into practical systems will still require adherence to the overall size,
weight, and power envelope dictated by small unmanned aircraft design.

In parallel, progress in low-power computing platforms continues to expand feasible
algorithmic options. Specialized accelerators for convolutional neural networks and dedi-
cated vision processors can deliver high performance per watt, narrowing the gap between
research-grade algorithms and embedded implementation. Nevertheless, total available
power on small platforms remains finite, and even efficient processors add mass and com-
plexity [14]. Consequently, optimization must occur at the system level, balancing com-
putation, sensing, and control rather than optimizing any single component in isolation.

Modern low-altitude airspace presents a challenging environment in which small un-
manned aircraft must operate safely among a variety of cooperative and non-cooperative
participants. The detect-and-avoid capability is essential for achieving this safety when
external infrastructure and universal equipage cannot be relied upon. Vision-based sensing
offers an appealing route due to its passive nature and compatibility with small, power-
limited platforms. However, the dependence on environmental conditions, lack of direct
range measurement, and stringent hardware constraints combine to make implementation
complex. Achieving reliable detect-and-avoid performance requires careful co-design of op-
tical systems, algorithms, and platform integration, supported by rigorous testing across
operational conditions. The feasibility of such systems rests not on any single techno-
logical breakthrough but on balanced engineering trade-offs that reconcile sensing and
computation with the physical realities of small unmanned aircraft flight.

The feasibility question is therefore not only whether vision-based detect-and-avoid can
be made to work at all, but whether it can be made to work consistently enough within re-
alistic hardware budgets and operating scenarios to warrant adoption as a substantive con-
tributor to risk reduction [15]. This question is complicated by the absence of universally
accepted quantitative performance metrics for small unmanned aircraft detect-and-avoid
and by the diversity of potential operations, from structured corridors with constrained
traffic patterns to unstructured environments with heterogeneous vehicles and pilot behav-
iors. A neutral assessment must focus on the internal coherence of sensing and decision
processes, the explicit accounting of size, weight, and power limitations, and the sensitiv-
ity of outcomes to environmental and behavioral uncertainties, rather than on optimistic
extrapolation from isolated demonstrations.

This paper develops such an assessment by combining physical models of camera sens-
ing, embedded computation, and aircraft dynamics with abstracted encounter models to
relate hardware-level and algorithm-level design choices to probabilities of timely conflict
detection and avoidance. The intention is not to prescribe detailed certification criteria,
but to examine the structural relationships that determine when onboard vision-based
detect-and-avoid can function as one element of a layered safety architecture for small
unmanned aircraft, and when its limitations are likely to dominate.

Beyond technical challenges, the detect-and-avoid function interacts with communica-
tion, navigation, and surveillance architectures that may include cooperative transponders,
cellular or satellite links, and ground-based sensing. For small unmanned aircraft that can-
not rely on redundant avionics or extensive certification pedigree, it is reasonable to expect
that onboard vision-based detect-and-avoid will operate alongside, rather than in isolation
from, these other sources of information where available. This motivates formulations in
which vision contributes bearing-only or bearing-plus-classification information into a fu-
sion framework that can also incorporate cooperative data when present [16]. Under size,
weight, and power constraints, however, fusion must be implemented in modest hardware
without assuming the availability of full-size airborne surveillance systems, implying that



the marginal benefit of vision must be evaluated relative to its incremental resource cost.

The introduction of autonomy in detect-and-avoid decision-making also raises ques-
tions of predictability and explainability. For systems that may rely on learning-based
components trained on large image corpora, systematic characterization of failure modes
is challenging. From a feasibility standpoint, this difficulty does not by itself preclude
deployment but signals the importance of binding algorithm performance to measurable
quantities such as detection range statistics and false alarm rates over relevant data sets.
The present analysis frames feasibility in such measurable terms, avoiding reliance on
unquantified generalization claims and instead tracing the implications of observed or
modeled performance through to encounter-level outcomes under clearly stated assump-
tions.

Table 1. Representative Size, Weight, and Power Budgets for Small UAS Platforms (Total width
<12 c¢m)

Platform Type Max  Takeoff Payload Ca- Power Bud- Detect-

Mass (kg) pacity (g) get (W) and-Avoid

Allocation
(W)

Micro Multirotor 1.5 200 80 8

Small Multirotor 5.0 800 200 12

Fixed-Wing 10.0 1500 300 15

(Short Range)

Fixed-Wing 20.0 2500 400 20

(Long Endurance)

Table 2. Camera Configurations and Optical Parameters for Vision-Based Detect-and-Avoid
(Total width < 12 cm)

Camera Type Resolution Focal Length Field of Power Con-

(pixels) (mm) View  (de- sumption
grees) (W)

Monocular 1920x 1080 6.0 78 2.0

CMOS

Stereo Pair 1280x720 4.0 90 4.5

CMOS (each)

Global-Shutter 2048 %1536 8.0 70 3.2

CMOS

Event-Based Sen- 640x480 3.0 100 1.2

sor

2 System-Level Constraints and Operational Scenarios

Size, weight, and power constraints for small unmanned aircraft systems arise from aerody-
namic, structural, and energy storage considerations that leave limited margin for mission-
specific payloads. A typical electric multirotor operating with a maximum take-off mass
of a few kilograms may allocate less than several hundred grams and a small fraction of
its power budget to all auxiliary payloads, including sensing and computation [17]. Fixed-
wing platforms optimized for endurance often exhibit higher payload fractions but must
still reconcile mass addition with impacts on wing loading, stall speed, and climb per-



Table 3. Embedded Processing Platforms and Performance Characteristics (Total width < 12

cm)
Processor Model = Peak Compute Typical Power Thermal Memory
(GFLOPS) (W) Limit (fC)  Bandwidth
(GB/s)
ARM Cortex-A72 25 5 80 6
NVIDIA Jetson 500 10 85 25
Nano
Qualcomm 1000 15 95 30
QRB5165
Custom FPGA 150 8 70 12
Board

Table 4. Environmental Factors Affecting Detection Performance (Total width < 12 cm)

Condition Illumination Visibility Relative False Alarm
(lux) Range (km) Detection Rate In-
Range Re- crease (%)
duction (%)

Clear Daylight 10000 10 0 0
Overcast 3000 8 15 8
Hazy 1000 4 35 20
Foggy 300 1 60 40
Low Sun Angle 8000 6 25 15

Table 5. Detection Performance Metrics as a Function of Range (Total width < 12 cm)

Range (m) Detection False ~ Alarm Processing  Confidence
Probability Probability Latency Score (01)
(%) (%) (ms)

100 98 1 50 0.95

200 85 2 65 0.88

300 70 3 80 0.76

400 45 5 100 0.58

500 25 6 120 0.43

formance. In both cases, integration of detect-and-avoid hardware must not materially
degrade the stability, controllability, or endurance required for the intended mission. This
implies that camera modules, lenses, enclosures, interconnects, and computing boards
must be selected with attention to both their individual properties and their combined
effects on mass distribution and aerodynamic drag.

Power constraints are closely tied to propulsion system design. Battery-powered mul-
tirotors may allocate on the order of 100 W to 400 W for propulsion during hover and
climb, with limited additional headroom available. Embedded processors suitable for on-
board vision, depending on architecture and operating point, may consume from a few
watts to tens of watts. Even modest additional consumption can shorten mission dura-
tion or reduce thrust margin, and thermal dissipation for such components is non-trivial
on compact airframes with limited airflow. In practice, design margins are allocated for
worst-case conditions, including high ambient temperature and low air density, leading
to conservative limits on continuous processing power [18]. These constraints influence



Table 6. Processing Latency Contributions by Pipeline Stage (Total width < 12 cm)

Stage Mean Latency Power Share Memory Comments
(ms) (%) Use (MB)

Image Acquisition 10 15 30 Exposure
and trans-
fer time

Preprocessing 20 20 60 Filtering,
normaliza-
tion

Object Detection 35 35 200 Neural
inference
or feature
extraction

Tracking 15 20 80 Kalman or
particle fil-
tering

Decision Logic 10 10 20 Threat
classifica-
tion and
command
output

Table 7. Comparison of Vision-Based and Non-Vision Detect-and-Avoid Modalities (Total width
< 12 cm)

Modality Range (m) Power Use (W) Mass (g) Cooperative
Require-
ment

Vision  (Visible 300600 8 120 None

Band)

Stereo Vision 200400 10 200 None

ADS-B Receiver >2000 3 50 Yes

Small Radar 8001200 20 500 None

Acoustic Array 150300 5 300 None

Table 8. Representative Avoidance Performance as Function of Closure Rate (Total width < 12

cm)

Closure Rate Required Required De- Probability Platform

(m/s) Warning Time tection Range of  Avoid- Maneuver
(s) (m) ance (%) Capability

(m/s?)

20 2.0 40 99 5.0

40 3.0 120 92 4.0

60 4.0 240 80 3.0

80 5.0 400 65 2.5

100 6.0 600 45 2.0

feasible frame rates, model sizes, and numbers of cameras.

Mechanical integration constraints further restrict the placement and orientation of

vision sensors.

Cameras require unobstructed fields of view free from propeller blades,



Table 9. Power Distribution and Allocation in Small UAS (Total width < 12 cm)

Subsystem Power Use (W) Power Share Operating Typical
(%) Voltage (V) Duty Cycle

(%)

Propulsion 150 75 14.8 100

Avionics & Con- 15 7 5.0 100

trol

Navigation Sen- 8 4 5.0 100

sors

Detect-and-Avoid 10 5 5.0 90

System

Communications 12 6 5.0 60

Table 10. Synthetic Evaluation Summary for Vision-Based Detect-and-Avoid (Total width < 12

cm)

Scenario Type Mean Detec- Latency (ms) False Missed
tion Range Alarms Detections
(m) / br (%)

Clear Sky Head- 450 70 2.1 3.0

On

Crossing Path 250 85 4.0 8.5

(Hazy)

Overcast  Oppo- 300 90 3.2 5.0

site Heading

Partial Occlusion 200 120 5.5 11.0

Urban

High-Clutter Ter- 180 130 6.0 14.0

rain

landing gear, and payload structures that could introduce partial occlusions or stray re-
flections. Mounting on booms or extended structures can reduce occlusion but introduces
structural loads and vibrational modes that may blur images or complicate stabilization.
Enclosures must protect against dust, moisture, and impact without adding excessive
mass. Cabling and connectors must maintain signal integrity and power delivery while
resisting fatigue. All of these aspects form part of the effective size and weight budget of
the detect-and-avoid system and interact with power dissipation by altering local airflow.
19]

Operational scenarios determine the class of encounters that the detect-and-avoid sys-
tem must address. For small unmanned aircraft operating at low altitudes in sparsely
populated areas, most conflicts may involve other small unmanned platforms or occa-
sional general aviation aircraft transiting at moderate speeds. In suburban or peri-urban
environments, interactions with helicopters, light aircraft, and elevated structures become
more prevalent. In dense urban settings, line-of-sight to potential intruders may be ob-
structed by buildings, and background clutter becomes highly structured. Each scenario
is associated with characteristic closure rates, relative altitudes, angular distributions of
potential intruders, and background radiance patterns. A system optimized for detecting
small dark targets against bright sky may exhibit strong performance in rural head-on
encounters but reduced performance when faced with complex urban textures and partial
occlusion.



Weather and illumination conditions complicate this picture [20]. Low sun angles cre-
ate glare and elongated shadows, overcast conditions reduce contrast, and haze attenuates
small features at distance. Precipitation and fog can severely limit effective vision range,
independent of hardware capability. Small unmanned aircraft are likely to be operated
in a wide variety of such conditions, either by design or due to rapidly changing environ-
ments. Since detect-and-avoid systems cannot rely on controlled laboratory conditions, a
feasibility assessment must consider not only best-case performance but also degradation
patterns across realistic operating envelopes. From a pragmatic standpoint, operators may
impose restrictions that avoid the most challenging conditions; however, reliance on such
restrictions should be explicit rather than implicit in feasibility arguments.

In this context, detect-and-avoid feasibility is closely linked to achievable coverage and
warning times. Sensor placement and number determine the angular region in which
intruders may be detected without severe foreshortening or glare, while platform agility
determines the amount of time required to maneuver out of potential conflicts once they
are identified [21]. Small multirotor systems with high thrust-to-weight ratios can produce
rapid lateral or vertical accelerations, allowing effective avoidance maneuvers even when
detection occurs at modest ranges. Fixed-wing systems with higher forward speeds and
limited normal-load capability require longer lead times. Any claim of feasibility for an
onboard vision-based system must therefore be tied to the specific combination of platform
performance, sensor configuration, and operational constraints in question.

Quantitatively, representative small unmanned aircraft may reserve on the order of
5% to 15% of their total electrical power budget for payloads beyond essential flight con-
trol, leaving perhaps 5 W to 20 W for sensing, onboard processing, and communications
combined. Within this envelope, continuous operation of a vision-based detect-and-avoid
pipeline must coexist with navigation computation and any mission-specific processing.
Mass allocations may similarly be limited to 5% to 10% of total take-off mass, and a
significant portion of that can already be consumed by primary mission payloads such as
specialized cameras or delivery mechanisms. The detect-and-avoid subsystem therefore
may be constrained to a few tens of grams for cameras and cables and a similar order for
processing hardware. Thermal design must ensure that this hardware can reject heat to the
environment without dedicated active cooling, which is rarely feasible on such platforms.
22)

Electromagnetic compatibility adds another subtle dimension. High-speed digital in-
terfaces for cameras and processors can produce emissions that couple into communica-
tion systems or navigation sensors. Shielding and filtering measures to mitigate such
coupling may add mass and volume, further tightening size and weight margins. The prac-
tical implication is that detect-and-avoid integration cannot be considered solely from the
standpoint of individual component specifications; instead, system-level constraints encom-
passing power, mass, aerodynamics, thermal behavior, and electromagnetic compatibility
jointly define the feasible region for onboard vision hardware.

3 Vision Sensing Architectures for Small UAS Detect-and-Avoid

Onboard vision-based detect-and-avoid architectures can be decomposed into sensor fron-
tend, processing backend, and decision logic, each subject to size, weight, and power
constraints. The sensor frontend encompasses camera modules, optics, and mechanical
mounting. For small unmanned aircraft, cameras with small-format sensors and wide-
angle lenses are frequently considered to maximize field of view per device [23]. However,
wide-angle optics reduce angular resolution per pixel for distant targets, effectively low-
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ering maximum detection range for a given target size and contrast. Narrower fields of
view improve range but require multiple cameras or gimballed mounts to achieve coverage,
increasing complexity and mass. Selection of focal length and sensor resolution therefore
reflects a trade between instantaneous coverage and detection range that must be balanced
in light of both encounter statistics and processing capacity.

Spectral sensitivity influences robustness. Visible-band sensors are efficient, low-cost,
and compact, but their performance is coupled to ambient illumination and can be chal-
lenged by low sun or high dynamic range scenes. Near-infrared sensitivity can improve
contrast for some materials and mitigate haze effects, yet may require specialized optics
and introduce sensitivity to thermal emission. Long-wave infrared offers night capability
and thermal contrast but is typically constrained by higher sensor cost, more demanding
calibration, and significant power consumption [24]. For small unmanned aircraft with
constrained power budgets, extensive cooling or large-format infrared arrays may be infea-
sible, suggesting that visible or near-infrared solutions with careful algorithm design are
more compatible with size, weight, and power limitations.

Processing backend architectures must ingest image streams, perform detection and
tracking, and feed outputs to guidance and control. Centralized processing using a single
system-on-chip can simplify software integration and resource management but concen-
trates power density and may require aggressive thermal management. Distributed pro-
cessing partitions the workload among microcontrollers or dedicated accelerators placed
near sensors, reducing cable bandwidth and enabling localized preprocessing. However,
distributed architectures require synchronization and robust communication links to en-
sure consistent state estimation. Under strict power constraints, both approaches may be
operated at reduced voltage and frequency, trading throughput for efficiency.

Algorithm selection is tightly coupled to architecture. Lightweight model-based algo-
rithms, including horizon detection, background modeling, and morphological filtering,
can operate with low computational overhead but may be less robust across diverse back-
grounds and lighting [25]. Convolutional neural networks trained on representative data
sets can provide improved detection performance at the cost of significantly higher com-
putation, memory, and implementation complexity. Pruning, quantization, and architec-
tural search can reduce these costs, but aggressive compression may degrade performance
in precisely those edge cases where detection is most critical. Feasibility considerations
therefore involve quantifying whether an embedded platform with a given power envelope
can sustain the computational load of a suitably robust algorithm at the frame rates and
resolutions necessary for timely detection.

The final component, decision logic, maps detection and tracking outputs into avoid-
ance actions. It must be implemented in a manner that is stable and predictable, as
oscillatory or overly sensitive responses can be detrimental in dense airspace. Decision
thresholds, temporal filters, and track confirmation logic must be tuned to balance false
alarm rates and missed detections while respecting the limitations of the flight control sys-
tem. This logic often interacts with other autonomy functions, such as mission planning
and geofencing, and its complexity is not negligible [26]. Comprehensive feasibility anal-
ysis must regard detect-and-avoid as a system-level capability whose components jointly
consume resources and whose interactions may expose emergent behavior.

Calibration and stability of multi-camera systems are particularly relevant for small
unmanned aircraft. Relative orientations and positions of cameras must be known with
sufficient accuracy that detected bearings can be fused into consistent three-dimensional
hypotheses. Flexible airframes and mounting structures subject to vibration and temper-
ature variations can cause slow drifts or rapid perturbations in calibration parameters.

11



Online calibration strategies can compensate for some of these effects but require addi-
tional computation and can be vulnerable to overfitting in low-feature environments. In
contrast, rigid monocular installations minimize these complexities but reduce opportu-
nities for geometric triangulation. The need for stable calibration thus exerts additional
pressure toward mechanically simple configurations consistent with size and weight limits.
27)

Dynamic range and motion characteristics of the sensor frontend also affect detect-
and-avoid performance. Rolling-shutter cameras, which dominate in compact low-power
devices, can introduce geometric distortions when the platform or scene exhibits rapid
motion, potentially degrading small-object localization. Global-shutter devices alleviate
this issue but have historically incurred higher cost and power consumption. Similarly, ex-
posure settings tuned for bright sky can saturate ground regions and obscure low-contrast
targets, whereas settings favoring darker scenes may reduce sensitivity to distant aircraft
against bright backgrounds. Adaptive exposure and high dynamic range techniques mit-
igate these effects at the cost of additional processing and potential temporal artifacts.
Under strict resource budgets, design choices must balance these trade-offs to ensure that
the effective signal presented to detection algorithms remains informative across expected
operating conditions.

4 Mathematical Modeling of Detection, Tracking, and Collision Risk

A more detailed mathematical framework can formalize the relationship between vision
system design and detect-and-avoid performance. Let the ownship and intruder states
follow deterministic kinematics over short intervals, with relative position r(¢) and relative
velocity u(t) as before [28]. Under a constant relative velocity assumption, the time to
closest approach 7 and miss distance magnitude d can be expressed as

TTU
T = —_—
ulu
T,\2
T u
d2:T’T7"—( T)
u'Uu

These expressions provide a compact mapping from relative state to collision risk and
underpin many detect-and-avoid logics. Vision-based sensing, however, typically observes
only the bearing unit vector b(t) = r(t)/||r(t)| projected into the camera frame, along
with image intensity patterns that encode target size and appearance. Thus, the system
must infer r(¢) and u(t), or at least 7 and d, from partial and noisy observations.
Assume that at discrete times ¢, the system obtains measurements z; comprising esti-
mated bearing and possibly additional cues such as apparent scale. The observation model
can be written abstractly as zp = h(zy) + vk, with x; denoting the relative state and vy,
observation noise. A recursive estimator produces &) with covariance Pj,. For purposes
of feasibility analysis, detailed estimator structure can be encapsulated by the resulting
distributions of 7 and a?k given the true encounter. A conflict is declared when 7 lies
within prescribed bounds and dy, falls below a threshold. Let E denote the event that a
true collision would occur absent avoidance and A the event that an avoidance maneuver
is initiated. The probability that the system prevents collision can be approximated as

P(A| E) = P(Rq = Rreq),

where Ry is the detection range and R,.; is the minimum range needed to execute an
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effective avoidance maneuver.

To connect detection range to system parameters, consider a simplified relation for the
minimum detectable angular size 0,,;,, governed by optics and algorithm sensitivity. For a
target of characteristic dimension S at range R, the apparent angular size is approximately
S/R [29]. Detection requires S/R > O, implying R < S/0n. The quantity 6,y
depends on pixel pitch, lens focal length, and signal-to-noise ratio. For a focal length f
and pixel pitch p, the angular sampling is approximately p/ f, and a target should subtend
a minimum number of pixels ny, min. This yields O,,in &~ npminp/f and thus

Sf

Np,minP

Rma:c ~

This expression, while idealized, illustrates how limited focal length and resolution reduce
maximum detection range for small intruders, especially when size, weight, and power
constraints restrict the use of large optics or high-resolution sensors.

False alarms and missed detections arise from background clutter and noise. If potential
detections are generated as random events with rate Ap4 per solid angle and confirmed
as tracks over a time window, the probability of at least one false track in a given interval
scales with both A\p4 and the size of the observed region. Elevated false alarm rates may
prompt conservative tuning that delays track confirmation, effectively increasing R;.,.
Conversely, aggressive tuning can reduce missed detections at the cost of more frequent
false maneuvers. A stylized balance may be expressed as

Pup = g(Ra; Omin, SNR),

Pra~ h(Apa;Ty),

where g and h are monotone functions reflecting algorithm behavior and T}, is the confirma-
tion window. While exact forms depend on implementation, these relationships emphasize
that hardware-imposed limits on resolution and sensitivity constrain achievable trade-offs
between Py/p and Pry4.

The collision risk over an ensemble of encounters can be approximated by integrat-
ing residual collision probabilities conditioned on detect-and-avoid behavior. Let fg(r,u)
describe the distribution of relative states for potential encounters. For each state, the as-
sociated detection range distribution and avoidance outcome define a conditional collision
probability. The overall residual risk is then [30]

Po = [¢(r,u) fp(r,u) dr du,

where 1 encodes the outcome of detection, tracking, and avoidance given system character-
istics. Feasibility in this sense involves demonstrating that for relevant fg, realistic vision
hardware and algorithms yield Pc below acceptable thresholds in the intended operational
context, recognizing that such thresholds and distributions are externally specified rather
than inherent to the technology.

A more refined treatment of detection performance introduces signal-to-noise ratio mod-
els for small targets in clutter. Let the average contrast between target and background
in the relevant region of interest be C}, the sensor noise standard deviation be ¢,,, and the
effective integration across N pixels contribute to detection. Then a simplified per-frame
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detection statistic may scale with

CiV'N

On

SNR =

Assuming a threshold SN R,,;, for reliable detection, the minimum detectable apparent
size and thus maximum detection range become functions of illumination, atmospheric
attenuation, and sensor characteristics. In practice, Cy and o,, vary with range and envi-
ronment, so Ry is better treated as a random variable conditioned on these factors than as
a fixed value. Monte Carlo or analytical approximations can then be employed to derive
distributions F'g, under specified conditions.

The mapping from detection to avoidance can be formalized through kinematic con-
straints. Consider an ownship capable of lateral acceleration up to amq; and operating
at speed V,. To achieve a miss distance not less than D,,;, against a head-on intruder
at relative speed V., the approximate required warning time 7., for a coordinated turn
maneuver can be bounded by

2Dmin

T’/‘Eq ~ a
max

The corresponding required detection range is then
Rreq ~ Vc(Tp + Treq)a

with T}, denoting combined sensing and processing latency. By comparing empirical or
simulated R, distributions with R, across encounter classes, one obtains feasibility con-
ditions expressed in terms of inequalities on tail probabilities such as P(Rq > Ryeq). This
representation is convenient because it decouples detailed algorithm structure from higher-
level performance assessment, provided the detection range statistics are measured or
modeled credibly.

Uncertainties in intruder behavior can be incorporated by replacing deterministic clo-
sure rates with distributions and by modeling deviations from straight-line flight [31]. For
example, if intruder trajectories experience bounded accelerations or execute turns, the
relative motion model underlying 7 and d must be adapted. State estimation frameworks
can incorporate such uncertainties through process noise, leading to broader distributions
for # and d. The detect-and-avoid decision thresholds may then be selected to maintain
desired probabilities of timely maneuver initiation across the uncertainty set, influencing
both Pyp and Pry. Again, size, weight, and power constraints influence how aggressively
such estimation and decision logic can be implemented on embedded hardware.

5 Algorithmic Trade-offs Under Size, Weight, and Power Limitations

Algorithmic design for onboard vision-based detect-and-avoid must reconcile performance
goals with the constraints of embedded implementation. Let C' denote the sustained
computational capacity of the processing hardware measured in operations per second al-
located to detect-and-avoid. For a model that requires L arithmetic operations per frame
at resolution and architecture of interest, operating at frame rate f demands Lf < C.
Additional computations for tracking, data fusion, and control must also be accommo-
dated within this budget. This inequality constrains the feasible combinations of model
complexity, resolution, and frame rate. In low-power systems where C' is modest, practical
operation may necessitate reduced resolution or simpler models, which in turn influence
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detection range and robustness. [32]

Power consumption can be modeled in terms of activity and voltage. Let the proces-
sor consume dynamic power approximately proportional to an activity factor, effective
capacitance, the square of supply voltage, and clock frequency. Lowering voltage and
frequency reduces power but also reduces maximum C. Thermal constraints impose an
upper bound on sustained power, which for small unmanned aircraft may be only a few
watts. Given this, designers may operate near an efficiency point where additional com-
putational margin is limited. Any algorithm that demands frequent peaks near the upper
limit risks throttling or instability. Consequently, detect-and-avoid implementations often
favor architectures with predictable and bounded computational load, such as fixed-depth
networks and deterministic processing pipelines, over highly dynamic schemes whose re-
source demands can spike unpredictably. [33]

Latency emerges directly from these considerations. If processing of each frame incurs
time T}, then the total effective warning time available for avoidance is reduced from T3, to
Ty —Tp. In high-speed encounters, even tens of milliseconds can be relevant. Suppose the
minimum required warning time for an avoidance maneuver, given platform performance
and desired miss distance Diyip, is Treq. Then feasibility requires Ry > V(T + Teq) with
high probability, where V. is closure rate. For modest closure rates and agile platforms,
this condition can be satisfied with moderate detection ranges. For higher closure rates or
less agile platforms, margins become tight, and algorithmic or hardware adjustments are
needed. Processing pipelines that enable early rejection of obvious non-threat regions can
reduce effective L, thereby reducing 7}, and improving feasibility.

Memory bandwidth and storage also play roles. High-resolution imagery at elevated
frame rates requires substantial bandwidth for reading sensor data, writing intermediate
results, and storing model parameters. Limited bandwidth can cause contention that
increases latency or forces lower frame rates [34]. Compression techniques or region-of-
interest processing can mitigate bandwidth demand but introduce additional complexity
and potential degradation of small-object fidelity. Under size, weight, and power con-
straints, memory subsystems with wide buses and large caches may be impractical, neces-
sitating tight coupling between algorithm design and memory architecture.

Robustness to implementation imperfections is another dimension of feasibility. Quan-
tization of network weights and activations to low bit-widths can yield substantial energy
savings but may affect detection sensitivity to subtle cues associated with distant or low-
contrast intruders. Fixed-point implementations must be carefully scaled to avoid satura-
tion and underflow across operating conditions. In addition, software complexity must be
kept within limits that support verification, validation, and runtime monitoring appropri-
ate for safety-related functions. While these considerations are not unique to vision-based
detect-and-avoid, they are sharpened by the tight margins imposed by small unmanned air-
craft platforms and by the need to maintain stable operation across heterogeneous mission
profiles.

Real-time scheduling of vision workloads on embedded platforms introduces further
considerations [35]. Pipelines often consist of sensor readout, image preprocessing, feature
extraction, candidate generation, classification, and tracking updates, each with associated
deadlines. Under tight power and computational budgets, designers may assign static time
slots and prioritize tasks that are safety critical, such as conflict detection, over secondary
tasks such as high-fidelity mapping. Preemption or dynamic frequency scaling in response
to fluctuating load can stabilize performance but complices timing analysis. For detect-
and-avoid, where worst-case latency bounds are central to safety arguments, predictable
execution patterns are advantageous, even if they entail conservative resource allocation.
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The choice between end-to-end learning-based pipelines and modular designs also has
implications. End-to-end approaches can, in principle, optimize detection and classifica-
tion jointly, but may obscure internal failure modes and pose challenges for incremental
validation. Modular designs allow individual components to be assessed and tuned, but
may forgo some potential performance gains from joint optimization [36]. Within small
unmanned aircraft constraints, modular decompositions that combine lightweight motion-
based pre-filters with focused application of heavier classifiers to selected regions appear
compatible with both verification needs and resource limits. Such architectures can re-
duce average computational load while preserving responsiveness to small, distant targets,
provided that pre-filters maintain high recall on relevant signatures.

Fault tolerance and runtime monitoring complete the algorithmic picture. Single points
of failure in vision processing pipelines may expose operations to undetected degrada-
tion due to, for example, misconfigured exposure settings or corrupted model param-
eters. Lightweight consistency checks, watchdog timers, and self-test routines can be
implemented to detect gross anomalies without incurring prohibitive overhead. Where
resources permit, diversity in models or implementations can mitigate correlated failure
modes, though full redundancy is typically unrealistic within small unmanned aircraft size
and weight envelopes. These mechanisms do not eliminate uncertainty but contribute to
bounding it, which is germane to feasibility assessments grounded in conservative assump-
tions. [37]

From a design methodology point of view, exploring algorithm configurations under
parametric sweeps of available compute and power can reveal regimes in which diminishing
returns set in. For example, increasing network depth beyond a certain point may yield
marginal improvements in detection probability at the cost of disproportionate increases
in latency and energy per frame, eroding overall feasibility. Conversely, carefully tuned
shallow networks or hybrid schemes that exploit temporal consistency can approach similar
performance with substantially lower resource demands. Embedding such analyses early
in platform design can prevent late-stage integration challenges where detect-and-avoid
requirements conflict with fixed hardware limitations.

6 Experimental Evaluation and Synthetic Campaign Design

Quantitative evaluation of vision-based detect-and-avoid systems under realistic size, weight,
and power constraints requires experimentation strategies that probe both hardware and
algorithm behavior. A combined approach often employs software-in-the-loop simulation,
hardware-in-the-loop emulation, and flight testing. In software-in-the-loop configurations,
representative encounter geometries and environmental conditions are rendered to produce
synthetic imagery that spans variations in range, aspect, illumination, background, and
target type. Vision algorithms execute on general-purpose hardware to estimate achievable
detection performance and to explore parameter sensitivities [38]. While such evaluations
do not capture all embedded constraints, they provide a controlled environment for initial
screening of architectures and models.

Hardware-in-the-loop experiments map these evaluations closer to operational reality
by running candidate algorithms on target or equivalent embedded processors while feeding
them prerecorded or synthetic imagery. This allows direct measurement of processing
latency, power consumption, and thermal behavior as functions of workload, as well as
observation of any throttling or performance variation induced by resource limits. By
systematically varying image resolution, frame rate, and algorithmic parameters, one can
chart feasible operating regions in which throughput and latency requirements are met
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without violating power or thermal constraints. Mapping these regions onto detection
performance derived from the imagery enables identification of configurations that are
both computationally sustainable and operationally meaningful.

Flight testing remains essential for exposing systems to unmodeled effects, includ-
ing platform vibrations, dynamic lighting, atmospheric scattering, and unexpected back-
ground structures. Small unmanned aircraft equipped with candidate vision systems can
be flown in instrumented environments with cooperative intruders following scripted tra-
jectories, providing ground-truth data for post hoc analysis [39]. Safety considerations
require conservative separation buffers and independent monitoring, limiting the range of
conditions that can be explored directly. Nonetheless, flight tests can validate key aspects
of the sensing chain, such as stability of calibration, resilience to motion blur, and sensitiv-
ity to practical integration issues like lens contamination and cable flexure. These insights
feed back into both algorithm design and synthetic modeling.

Evaluation metrics in such campaigns typically include detection probability as a func-
tion of range, false alarm rate per unit time or solid angle, track continuity, and latency
from image acquisition to conflict declaration. By aggregating results across encounter
classes and environmental conditions, one can estimate empirical detection range distri-
butions and associated decision latencies. These quantities, combined with models of
platform maneuverability and encounter kinematics, allow construction of approximate
residual risk estimates analogous to the earlier integral expression for collision probability.
Importantly, these estimates are conditional on the particular hardware, algorithms, and
operating assumptions tested [40]. Feasibility conclusions should therefore be framed in
terms of the specific configurations and envelopes studied, rather than generalized without
qualification to all small unmanned aircraft or all operations.

In constructing synthetic data sets, care is required to avoid optimistic biases. If
training and evaluation data are drawn from similar distributions with limited variability,
estimated detection performance may appear strong yet fail to generalize to novel envi-
ronments. Including challenging cases such as cluttered urban skylines, sun glint, partial
occlusions, and diverse aircraft textures is therefore important. Similarly, scenario sam-
pling should avoid overrepresentation of benign geometries with long warning times, as
this can mask weaknesses in rare but critical head-on or crossing encounters with limited
time margins. From a feasibility perspective, emphasizing coverage of adverse and edge
cases yields a more informative characterization, even if it reduces nominal performance
metrics.

Measurements from hardware-in-the-loop and flight tests can be used to calibrate sim-
ulation models [41]. For example, observed relationships between ambient temperature,
processor utilization, and throttling behavior inform power and thermal models, which
then constrain allowable workloads in broader simulations. Likewise, empirical distribu-
tions of detection range and latency under measured visibility conditions can validate or
refine analytic models. This iterative process aligns modeled feasibility assessments with
observed system behavior, reducing the risk that conclusions rest on unrealistic assump-
tions.

A complementary dimension of evaluation involves the interaction between detect-and-
avoid outputs and flight control. Avoidance maneuvers commanded by the vision system
must integrate coherently with existing stabilization and navigation loops. Experiments
can examine whether commanded maneuvers are faithfully executed given actuation limits,
delays, and concurrent commands from higher-level mission planners. Situations in which
aggressive avoidance demands conflict with vehicle stability or mission constraints are
particularly salient, as they may reveal implicit assumptions about available maneuver
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authority. Understanding these interactions is integral to determining whether a vision-
based system can, in practice, translate detections into effective risk mitigation on a given
platform. [42]

7 Integrated Design Space and Feasibility Assessment

Bringing together system constraints, sensing architectures, mathematical modeling, and
evaluation results, feasibility can be discussed in terms of an integrated design space
spanned by key parameters. These include optical aperture and focal length, sensor reso-
lution and frame rate, processor throughput and power consumption, platform maneuver
capability, and characteristics of the operational environment. Each point in this space
corresponds to a potential detect-and-avoid configuration whose performance can be ap-
proximated through the models and methods outlined earlier. The structure of this space
is shaped by physical and practical limits: optics cannot exceed certain diameters without
violating mass or drag constraints, processors cannot consume more than a bounded frac-
tion of available electrical power, and platforms cannot consistently deliver accelerations
beyond their mechanical capabilities.

Within this space, regions can be identified where detect-and-avoid performance is ma-
terially constrained by specific bottlenecks. For instance, combinations of low-resolution
cameras and limited focal length may cap maximum detection range below values compati-
ble with high closure rate encounters, regardless of algorithmic sophistication. Conversely,
powerful processors operating at higher power levels might support complex algorithms
and high-resolution input, but only at the expense of reduced endurance or increased
thermal stress that may be unacceptable for some missions [43]. More favorable regions
arise when modestly capable sensors and processors are mounted on agile platforms oper-
ating in structured environments with bounded closure rates and predictable backgrounds,
enabling sufficient warning times without extreme hardware demands.

Trade-offs between different resource allocations can also be characterized. Increasing
the number of cameras improves angular coverage and reduces blind zones, but adds mass
and elevates processing load. Increasing focal length extends detection range for a given
target size but narrows field of view, potentially increasing the probability that intruders
approach from outside coverage arcs. Raising frame rate improves temporal resolution for
tracking and reduces motion blur, but scales linearly with computational requirements.
Under fixed size, weight, and power budgets, improvements along one dimension typically
require reductions along another, and not all directions lead to net benefit. Feasibility
assessment thus benefits from explicit multi-dimensional optimization frameworks that
balance these competing effects with respect to representative encounter models and risk
metrics. [44]

In such optimization, the role of operational constraints becomes explicit. If maximum
relative speeds in a particular corridor are limited by procedure, the necessary detection
range can be reduced, broadening the set of feasible onboard vision configurations. If
operations are confined to daylight and good visibility, algorithmic and optical demands are
relaxed relative to all-weather requirements. Conversely, if operations demand coexistence
with faster crewed aircraft in uncontrolled environments, or if night operations are required,
feasibility may hinge on more capable sensors or on augmenting vision with cooperative
surveillance or alternative sensing modalities. Rather than assuming uniform applicability,
a neutral assessment treats onboard vision-based detect-and-avoid as one design variable
among several, whose appropriateness depends on context.

Iustrative case studies help make the integrated design space concrete. Consider a
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multirotor platform with maximum take-off mass near 5 kg, capable of lateral accelerations
approximately 4 m/s? and typical cruise speeds near 12 m/s. Suppose the payload budget
permits allocation of 150 g and 8 W to a detect-and-avoid subsystem, supporting two
lightweight global-shutter cameras and an embedded processor delivering effective capacity
in the low gigaflops range. Encounter modeling focused on other small unmanned aircraft
and light helicopters with closure rates below 50 m/s may indicate that detection ranges
on the order of several hundred meters are sufficient to enable avoidance [45]. Synthetic
and flight experiments could then evaluate whether candidate algorithms on the selected
hardware achieve such ranges with acceptable false alarm rates across relevant conditions.
If so, this configuration can be regarded as within a feasible region for vision-based detect-
and-avoid.

In contrast, consider a small fixed-wing delivery aircraft of similar mass operating at
30 m/s, sharing uncontrolled airspace with crewed aircraft at significantly higher closure
rates. For such a platform, required detection ranges to support lateral or vertical ma-
neuvers can extend into the kilometer regime. Under tight size, weight, and power limits,
achievable optical apertures and sensor resolutions may yield reliable detection only at
substantially shorter distances. Unless complemented by cooperative surveillance or other
sensing modalities, onboard vision alone may then provide limited margin. These exam-
ples illustrate how feasibility is contingent on aligning system design with the specific
kinematic and environmental envelope rather than presuming uniform applicability. [46]

As technologies evolve, the boundaries of feasible regions can shift. Improvements
in sensor quantum efficiency, on-chip processing, and low-power accelerators can extend
detection ranges or reduce latencies without proportionally increasing power consumption.
Algorithmic advances in efficient network architectures and training methodologies can
enhance robustness at fixed computational budgets. However, variability in real-world
environments and traffic behaviors persists, and structural limitations such as line-of-sight
dependence remain. Consequently, updated feasibility analyses should continue to adopt
conservative, data-informed assumptions and should present results in terms of conditional
statements tied to explicit configurations and operational profiles.

Finally, it is useful to note that many of the dependencies in this design space are
smooth rather than abrupt. Small incremental increases in available power, modest im-
provements in optical quality, or incremental gains in algorithmic efficiency can collectively
shift a configuration from marginal to acceptable performance [47]. Similarly, relatively
small degradations in visibility, calibration accuracy, or processor health can erode margins.
Feasibility evaluations that acknowledge these gradients can inform design choices that fa-
vor graceful degradation and resilience, such as selecting operating points with surplus
computational capacity, designing optics with moderate reserve in resolution, or adopting
control policies that maintain maneuver authority explicitly reserved for avoidance. In
this way, onboard vision-based detect-and-avoid can be incorporated as part of a broader
engineering approach that prioritizes transparent margins and incremental improvement
over singular dependencies on any individual component or performance claim.

Another dimension of the design space concerns integration with higher-level traffic
management concepts. If small unmanned aircraft operations are constrained to desig-
nated corridors or altitudes where background clutter and traffic patterns are relatively
structured, vision-based detect-and-avoid algorithms can exploit these regularities, for
example by tailoring detection thresholds to dominant approach angles or by allocating
higher resolution to sectors with elevated conflict likelihood. Conversely, if operations
occur in fully unstructured environments with broad distributions of intruder approach
directions and behaviors, conservative tuning may be necessary, potentially increasing
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false alarm rates and computational burden. The feasibility of onboard vision is therefore
linked not only to physical hardware parameters but also to the extent to which opera-
tional frameworks can reduce uncertainty in the encounter space. Reasoned combinations
of modest procedural constraints with resource-aware vision system designs can, in many
cases, produce more favorable feasibility outcomes than attempts to rely on either element
in isolation. [48]

8 Conclusion

The feasibility of onboard vision-based detect-and-avoid for small unmanned aircraft sys-
tems under stringent size, weight, and power constraints arises from the interdependent
balance between sensing architecture, computational design, dynamic performance of the
airframe, and the operational context within which the system must function. Vision-based
sensing offers a compact and passive means to achieve angular awareness of surrounding
traffic without reliance on cooperative transponders or external infrastructure. The po-
tential of such systems lies in their ability to detect and track non-cooperative objects
using monocular or stereo imagery, translating visual information into actionable collision
avoidance decisions. However, the practical effectiveness of these systems is not intrinsic
to the technology itself; it is defined by the achievable detection ranges, the latency with
which data can be processed into decisions, the reliability of classification under variable
illumination, and the false alarm behavior under complex backgrounds. Environmental
variability, encompassing factors such as haze, glare, and clutter, often imposes stochastic
limitations on detection probabilities that cannot be completely eliminated by algorithmic
sophistication alone.

Mathematical models connecting detection range distributions, encounter kinematics,
and avoidance maneuver dynamics allow the estimation of whether the temporal margins
available for avoidance are sufficient under different encounter geometries. In simplified
form, the expected available warning time can be represented as the ratio of the detection
range to the closure rate between aircraft, which must exceed the sum of sensing and
control latencies plus the time required to execute a maneuver of given acceleration limits
[49]. If R, denotes the detection range and V, the relative closure velocity, the warning
time T, satisfies T,, = Rq/V.. Avoidance feasibility requires that T}, exceed a threshold
composed of processing latency T, and maneuver time Ty, implying Rg > V.(T,+1T,). For
small unmanned aircraft operating at moderate closure rates, achievable detection ranges
of several hundred meters can yield feasible warning times when computational and control
latencies are minimized. Yet for faster encounters or degraded environmental conditions,
margins collapse quickly. This illustrates how physical parameters, algorithmic efficiency,
and platform agility jointly determine whether onboard vision sensing can maintain safe
separation.

The algorithmic dimension introduces a dense network of trade-offs. Increasing model
complexity can enhance detection robustness across diverse backgrounds but scales com-
putation and power requirements nonlinearly. Input resolution directly affects detection
range because smaller targets subtend fewer pixels; however, higher resolutions increase
memory traffic and computational load. Similarly, increasing frame rate reduces temporal
aliasing and improves responsiveness, but also raises power consumption and heat gen-
eration [50]. Quantization precision in learned models influences inference accuracy and
energy efficiency, with low-bit quantization reducing power draw but potentially degrad-
ing sensitivity to small or low-contrast targets. These interdependencies define a narrow
region of feasible configurations where accuracy, latency, and energy coexist in acceptable
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balance. Within this region, co-design of hardware and software is imperative. Algo-
rithmic architectures must be tailored to the capabilities of specific embedded processors,
exploiting parallelism and minimizing data movement to maintain real-time performance
without exceeding thermal limits.

Embedded processing platforms impose strict upper bounds on throughput and deter-
ministic timing behavior. Small unmanned aircraft often rely on processors delivering only
a few gigaflops of sustained performance at power levels below 10 W. To meet these limits,
detect-and-avoid algorithms must employ efficiency strategies such as lightweight convo-
lutional architectures, selective region-of-interest processing, or temporal filtering that
leverages prior frame information to reduce redundant computation [51]. The processing
chain must be designed for bounded latency; jitter in inference time can produce unpre-
dictable decision delays that degrade safety margins. Real-time operation requires that
each stageimage acquisition, preprocessing, feature extraction, detection, tracking, and
decision logicexecute within a predictable time window synchronized with the aircrafts
control loops.

Synthetic imagery and high-fidelity simulation provide a first layer of evaluation, en-
abling systematic variation of conditions that would be difficult to reproduce in flight.
Synthetic campaigns can explore relationships between apparent target size, contrast, and
detection probability, generating empirical detection range distributions. Hardware-in-the-
loop experiments bridge the gap between simulation and flight by running these pipelines
on actual embedded hardware under controlled workloads, quantifying latencies and ther-
mal effects. These experiments can reveal subtle interactions such as frequency throttling
under sustained load, which might not appear in simulation but strongly influence real-
time feasibility. Targeted flight testing then validates the full sensing and control chain in
realistic conditions, exposing effects of vibration, lighting transitions, and attitude-induced
camera motion. Together, these methodologies constitute a layered evaluation approach
that quantifies detection probability, false alarm rates, latency, and overall residual colli-
sion risk across representative operational envelopes. [52]

Residual collision risk serves as the ultimate metric connecting detection performance
to operational safety. The risk can be formalized as the probability that an encounter
results in a loss of separation given the sensing and avoidance system in place. This prob-
ability depends on both physical and decision-level factors. Let Py;p denote the missed
detection probability, Pr4 the false alarm probability, and P, p the conditional probabil-
ity of successful avoidance given a detection. Then the residual collision probability Po
over an ensemble of encounters may be approximated as Po ~ (1 — PA| p)(1 — Ppa)Puyp.
Although simplistic, this representation highlights that both sensing and control com-
ponents must perform reliably for risk to remain acceptably low. Vision-based systems
reduce Py;p through improved algorithms and optics but may increase Pr4 under clutter.
Hardware and software co-optimization seeks to minimize the composite product of these
probabilities under fixed resource budgets.

Evaluating such metrics requires consistent definitions of operational envelopes. For
example, a small quadrotor flying at 12 m/s encounters relative closure rates of 24 m/s
in symmetric head-on engagements with similar aircraft [53]. If the systems effective
detection range is 250 m and total response latency 1.5 s, the available warning time
is approximately 10.4 s, leaving roughly 8.9 s for avoidance after latency deductionan
adequate margin for most lateral or vertical maneuvers given typical acceleration capacities
near 4 m/s?2. However, under degraded visibility reducing detection range to 100 m,
warning time falls below 4.2 s, and after accounting for latency, maneuvering time drops
below 3 s, which is marginal. These numeric illustrations underscore the sensitivity of
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feasibility to environmental and system parameters. Even modest reductions in range or
increases in latency can produce disproportionate decreases in avoidance margin.

False alarm management remains a critical aspect of operational feasibility. Excessive
false alarms can cause unnecessary maneuvers, reducing mission efficiency and potentially
introducing new risks through erratic flight behavior. Practical systems must balance
conservatism in detection with operational stability. Temporal confirmation logic, which
requires consistent detection across multiple frames before declaring a threat, reduces false
alarms but increases detection latency [54]. The trade-off between false alarm suppression
and timely response must therefore be carefully tuned based on encounter statistics and
mission priorities. Analytical modeling and simulation help quantify these trade-offs under
different parameterizations, guiding system-level design.

Environmental robustness also determines whether onboard vision-based systems can
operate across diverse contexts. Variations in ambient brightness, dynamic range, and
background texture significantly affect detection reliability. Adaptive exposure control,
dynamic thresholding, and contrast normalization can partially compensate but consume
computational resources and may not fully eliminate sensitivity to extreme conditions.
Cloud shadows, glare from low-angle sunlight, or reflective surfaces can produce false
positives. Sensor placement and optical coatings help mitigate some of these effects but
cannot guarantee invariance. Consequently, realistic feasibility assessments must account
for degraded conditions and establish operational envelopesranges of illumination and
weather within which specified performance can be maintained with high probability. [55]

Integration with flight control systems introduces further complexity. Avoidance maneu-
vers derived from visual detection must be compatible with vehicle dynamics and mission
objectives. Multirotors can execute rapid lateral translations, while fixed-wing aircraft
require banked turns and experience greater inertia. The control interface must therefore
interpret avoidance commands within the vehicles flight envelope, ensuring stability and
preventing excessive control deflections. Timing synchronization between perception and
control loops is essential; even minor mismatches can lead to phase lags that reduce maneu-
ver effectiveness. Testing under coupled perceptioncontrol operation verifies that detection
events propagate through the control chain without excessive latency or oscillation.

The integrated assessment of all these factors reveals that vision-based detect-and-
avoid is neither universally sufficient nor categorically infeasible [56]. It occupies a middle
ground where feasibility depends on explicit matching of components and context. For
platforms with moderate speeds, agile maneuvering, and operations constrained to daylight
and clear weather, onboard vision sensing can deliver meaningful reductions in collision
risk. For faster aircraft or operations requiring all-weather performance, additional sensing
modalities or cooperative aids become necessary. The value of vision lies not in replacing
all other systems but in augmenting the situational awareness of small platforms operating
autonomously or semi-autonomously in complex environments.

Continued advances in image sensors, optics, and embedded processing promise gradual
expansion of the feasible design space. Improved quantum efficiency and on-chip integra-
tion reduce power consumption while increasing sensitivity. Dedicated neural accelerators
and low-power graphics processors enable real-time inference with modest energy bud-
gets [57]. Algorithmic innovationssuch as event-based processing, temporal integration,
and efficient model compressionextend operational viability without violating size, weight,
and power constraints. Nevertheless, each increment in performance must be validated
through systematic evaluation rather than assumed from simulation or laboratory data.
Robust methodologies encompassing synthetic, hardware-in-the-loop, and flight domains
remain the foundation for understanding both strengths and limitations.
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Ultimately, the feasibility of onboard vision-based detect-and-avoid rests on pragmatic
engineering alignment. Sensors must provide sufficient optical fidelity, processors must
deliver predictable latency, algorithms must be computationally tractable, and the plat-
form must sustain necessary maneuver authority. Each element interacts multiplicatively
rather than additively; a deficiency in any component propagates through the system,
constraining the whole. Recognizing this interdependence leads to design strategies em-
phasizing co-optimization and balanced margins rather than singular focus on any one
factor. With disciplined integration and empirically grounded evaluation, onboard vision
sensing can serve as a viable component of layered separation assurance architectures for
small unmanned aircraft, contributing to safe coexistence in shared low-altitude airspace
while acknowledging the intrinsic limits imposed by physics and available resources [58].
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